Evolution of iron and oxygen biogeochemical cycles during the Precambrian

Geobiology. 2023 Nov;21(6):689-707. doi: 10.1111/gbi.12571. Epub 2023 Aug 25.

Abstract

Iron (Fe) is an essential element for life, and its geochemical cycle is intimately linked to the coupled history of life and Earth's environment. The accumulated geologic records indicate that ferruginous waters existed in the Precambrian oceans not only before the first major rise of atmospheric O2 levels (Great Oxidation Event; GOE) during the Paleoproterozoic, but also during the rest of the Proterozoic. However, the interactive evolution of the biogeochemical cycles of O2 and Fe during the Archean-Proterozoic remains ambiguous. Here, we develop a biogeochemical model to investigate the coupled biogeochemical evolution of Fe-O2 -P-C cycles across the GOE. Our model demonstrates that the marine Fe cycle was less sensitive to changes in the production rate of O2 before the GOE (atmospheric pO2 < 10-6 PAL; present atmospheric level). When the P supply rate to the ocean exceeds a certain threshold, the GOE occurs and atmospheric pO2 rises to ~10-3 -10-1 PAL. After the GOE, the marine Fe(II) concentration is highly sensitive to atmospheric pO2 , suggesting that the marine redox landscape during the Proterozoic may have fluctuated between ferruginous conditions and anoxic non-ferruginous conditions with sulfidic water masses around continental margins. At a certain threshold value of atmospheric pO2 of ~0.3% PAL, the primary oxidation pathway of Fe(II) shifts from the activity of Fe(II)-utilizing anoxygenic photoautotrophs in sunlit surface waters to abiotic process in the deep ocean. This is accompanied by a shift in the primary deposition site of Fe(III) hydroxides from the surface ocean to the deep sea, providing a plausible mechanistic explanation for the observed cessation of iron formations during the Proterozoic.