First Report of Root Rot of Redbud Caused by Phytopythium vexans in Tennessee and the United States

Plant Dis. 2023 Aug 25. doi: 10.1094/PDIS-07-23-1276-PDN. Online ahead of print.

Abstract

The eastern redbud (Cercis canadensis L.) is an esthetically and economically important landscape tree with vibrant blossoms and attractive heart-shaped leaves. One-year-old eastern redbud seedlings grown in field condition in two commercial nurseries in Warren Co., Tennessee exhibited severe root rot in October 2021. Dark brown to black lesions and rot were observed in the affected roots (Fig. 1a). Disease severity was 50-75% of root area and disease incidence was approximately 30-40% of 10,000 plants. Surface sterilized (10% NaOCl; 1 min) symptomatic tissues were plated on V8-PARPH and incubated at 25°C. Whitish cottony mycelia with radiate and chrysanthemum flower-like growth patterns were observed within 4 days of incubation. Subglobose papillate sporangia (10.24 to 20.98 µm, n=50), filamentous to globose smooth oogonia, bell-shaped antheridia and spherical zoospores that are characteristic of Phytopythium vexans (de Cock et al. 2015) were observed in older cultures that were subjected to specific growth conditions as previously described by Ghimire & Baysal-Gurel (2023). Pathogen identification was confirmed by extracting total DNA using the DNeasy PowerLyzer Microbial Kit from 7-day-old cultures of isolates FBG0874, FBG1998, FBG2009 grown on V8-PARPH. P. vexans specific LAMP assay was conducted for the rapid molecular screening and confirmation of the isolates (Ghimire et al. 2023). Primer pairs ITS1/ITS4 (White et al. 1990), NL1/NL4 (Baten et al. 2014), Levup and Fm85mod (Robideau et al. 2011) were used to amplify and sequence the internal transcribed spacer (ITS), 28S large subunit (LSU) of ribosomal RNA and the cytochrome c oxidase subunit I (CoxI) of mitochondrial DNA genetic markers, respectively. The sequences (GenBank accession nos. OR204701, OR205212, OR205213: ITS; OR205214, OR205215, OR205216: LSU; OR220805, OR220806, OR220807: CoxI) were 100% similar to ITS, LSU, and CoxI genetic markers of P. vexans isolates in the NCBI database (MK011121: ITS, KX092469: LSU and KT692908: CoxI). Pathogenicity tests were performed on one-year-old eastern redbud seedlings grown in 1 gal containers to fulfill Koch's postulate. Eastern redbud seedlings were drench inoculated (150 ml/plant) with pathogen slurry (two plates of 7-day-old culture/liter) (Panth et al. 2021) of isolates FBG0874, FBG1998, and FBG2009 (five plants/isolate). Control plants were drenched with agar slurry without pathogen. The study was conducted in a greenhouse maintained at 21 to 23°C, 70%RH, with 16-h photoperiod and irrigated twice a day for 2 min using an overhead irrigation system. Fourteen days after inoculation dark brown to black lesions developed in the root of all inoculated plants that were identical to the symptoms observed in the original samples (Fig. 1b), while the roots of non-inoculated plants remained asymptomatic (Fig. 1c). Isolates resembling P. vexans morphological characteristics were recovered from inoculated plants, and their identity was confirmed as P. vexans using LAMP assay. P. vexans has been previously reported to cause root and crown rot in flowering cherry, ginkgo, and red maple in Tennessee (Baysal-Gurel et al. 2021, Panth et al. 2021). To our knowledge, this is the first report of P. vexans causing root rot of eastern redbud in Tennessee and the United States. Identification of this pathogen as the causal agent is important in designing and implementing effective management practices to mitigate this threat to redbud production.

Keywords: Causal Agent; Crop Type; Oomycetes; Ornamentals; Redbud; woody ornamentals.