Re-routing GPR56 signalling using Gα12/13 G protein chimeras

Basic Clin Pharmacol Toxicol. 2023 Oct;133(4):378-389. doi: 10.1111/bcpt.13935. Epub 2023 Sep 16.

Abstract

Adhesion G protein-coupled receptors (aGPCRs) constitute the second largest subclass of the GPCR superfamily. Although canonical GPCRs are explored pharmacologically as drug targets, no clinically approved drugs target the aGPCR family so far. The aGPCR GPR56/ADGRG1 stands out as an especially promising target, given its direct link to the monogenetic disease bilateral frontoparietal polymicrogyria and implications in cancers. Key to understanding GPCR pharmacology has been mapping out intracellular signalling activity. Detection of GPCR signalling in the Gαs /Gαi /Gαq G protein pathways is feasible with second messenger detection systems. However, in the case of Gα12/13 -coupled receptors, like GPR56, signalling detection is more challenging due to the lack of direct second messenger generation. To overcome this challenge, we engineered a Gαq chimera to translate Gα12/13 signalling. We show the ability of the chimeric GαΔ6q12myr and GαΔ6q13myr to translate basal Gα12/13 signalling of GPR56 to a Gαq readout in transcription factor luciferase reporter systems and show that the established peptide ligands (P7 and P19) function to enhance this signal. We further demonstrate the ability to directly influence the generation of second messengers in inositol-3-phosphate assays. In the future, these chimeric G proteins could facilitate basic functional studies, drug screenings and deorphanization of other aGPCRs.

Keywords: G protein chimeras; G protein-coupled 7TM receptors; Type II: adhesion GPCRs; drug discovery and development; outcome measures.

MeSH terms

  • GTP-Binding Proteins / metabolism
  • Peptides
  • Receptors, G-Protein-Coupled* / genetics
  • Receptors, G-Protein-Coupled* / metabolism
  • Signal Transduction*

Substances

  • Receptors, G-Protein-Coupled
  • GTP-Binding Proteins
  • Peptides