Heterozygous FOXJ1 Mutations Cause Incomplete Ependymal Cell Differentiation and Communicating Hydrocephalus

Cell Mol Neurobiol. 2023 Nov;43(8):4103-4116. doi: 10.1007/s10571-023-01398-6. Epub 2023 Aug 24.

Abstract

Heterozygous mutations affecting FOXJ1, a transcription factor governing multiciliated cell development, have been associated with obstructive hydrocephalus in humans. However, factors that disrupt multiciliated ependymal cell function often cause communicating hydrocephalus, raising questions about whether FOXJ1 mutations cause hydrocephalus primarily by blocking cerebrospinal fluid (CSF) flow or by different mechanisms. Here, we show that heterozygous FOXJ1 mutations are also associated with communicating hydrocephalus in humans and cause communicating hydrocephalus in mice. Disruption of one Foxj1 allele in mice leads to incomplete ependymal cell differentiation and communicating hydrocephalus. Mature ependymal cell number and motile cilia number are decreased, and 12% of motile cilia display abnormal axonemes. We observed decreased microtubule attachment to basal bodies, random localization and orientation of basal body patches, loss of planar cell polarity, and a disruption of unidirectional CSF flow. Thus, heterozygous FOXJ1 mutations impair ventricular multiciliated cell differentiation, thereby causing communicating hydrocephalus. CSF flow obstruction may develop secondarily in some patients harboring FOXJ1 mutations. Heterozygous FOXJ1 mutations impair motile cilia structure and basal body alignment, thereby disrupting CSF flow dynamics and causing communicating hydrocephalus.

Keywords: Ependyma; FOXJ1; Hydrocephalus; Motile cilia.

MeSH terms

  • Animals
  • Cell Differentiation
  • Cilia / genetics
  • Cilia / metabolism
  • Ependyma / metabolism
  • Forkhead Transcription Factors / genetics
  • Forkhead Transcription Factors / metabolism
  • Gene Expression Regulation
  • Humans
  • Hydrocephalus* / genetics
  • Mice
  • Mutation / genetics

Substances

  • FOXJ1 protein, human
  • Forkhead Transcription Factors
  • FOXJ1 protein, mouse