Life motion signals modulate visual working memory

Psychon Bull Rev. 2024 Feb;31(1):380-388. doi: 10.3758/s13423-023-02362-7. Epub 2023 Aug 24.

Abstract

Previous research has demonstrated that biological motion (BM) cues can induce a reflexive attentional orienting effect, a phenomenon referred to as social attention. However, it remains undetermined whether BM cues can further affect higher-order cognitive processes, such as visual working memory (WM). By combining a modified central pre-cueing paradigm with a traditional WM change detection task, the current study investigated whether the walking direction of BM, as a non-predictive central cue, could modulate the encoding process of WM. Results revealed a significant improvement in WM performance for the items appearing at the location cued by the walking direction of BM. The observed effect disappeared when the BM cues were shown inverted, or when the critical biological characteristics of the cues were removed. Crucially, this effect could be extended to upright feet motion cues without global configuration, reflecting the key role of local BM signals in modulating WM. More importantly, such a BM-induced modulation effect was not observed with inanimate motion cues, although these cues can also elicit attentional effects. Our findings suggest that the attentional effect induced by life motion signals can penetrate to higher-order cognitive processes, and provide compelling evidence for the existence of "life motion detector" in the human brain from a high-level cognitive function perspective.

Keywords: Biological motion; Life motion detector; Social attention; Working memory.

MeSH terms

  • Attention
  • Brain
  • Cues*
  • Humans
  • Memory, Short-Term*
  • Walking