Spiking neural P systems with lateral inhibition

Neural Netw. 2023 Oct:167:36-49. doi: 10.1016/j.neunet.2023.08.013. Epub 2023 Aug 12.

Abstract

As a member of the third generation of artificial neural network models, spiking neural P systems (SN P systems) have gained a hot research spot in recent years. This work introduces the phenomenon of lateral inhibition in biological nervous systems into SN P systems, and proposes SN P systems with lateral inhibition (LISN P systems). LISN P systems add the property of synaptic length to portray the lateral distance between neurons, and adopt a new form of rules, lateral interaction rules, to describe the reception of spikes by postsynaptic neurons with different lateral distances from the presynaptic neuron. Specifically, an excited neuron produces lateral inhibition on surrounding postsynaptic neurons. Postsynaptic neurons close to the excited neuron, i.e., neurons with small lateral distances, are more susceptible to lateral inhibition and either receive a fewer number of spikes generated by the excited neuron or fail to receive spikes. As the lateral distance increases, the lateral inhibition weakens, and the number of spikes received by postsynaptic neurons increases. Based on the above mechanism, four specific LISN P systems are designed for generating arbitrary odd numbers, arbitrary even numbers, arbitrary natural numbers and arithmetic series, respectively, as examples. By designing working modules, LISN P systems provide equivalence in computational power to the universal register machines in both generating and accepting modes. This verifies the computational completeness of LISN P systems. A universal LISN P system using merely 65 neurons is devised for function computation. According to comparisons among several systems, universal LISN P systems require fewer computational resources.

Keywords: Lateral inhibition; Membrane computing; Spiking neural P systems; Turing universality.

MeSH terms

  • Action Potentials / physiology
  • Models, Neurological*
  • Neural Networks, Computer*
  • Neurons / physiology