Experimental study on damage mechanism of blood vessel by cavitation bubbles

Ultrason Sonochem. 2023 Oct:99:106562. doi: 10.1016/j.ultsonch.2023.106562. Epub 2023 Aug 20.

Abstract

Ultrasound-induced cavitation in blood vessels is a common scenario in medical procedures. This paper focuses on understanding the mechanism of microscopic damage to vessel walls caused by the evolution of cavitation bubbles within the vessels. In this study, cavitation bubbles were generated using the low-voltage discharge method in 0.9% sodium chloride saline, and vessel models with wall thicknesses ranging from 0.7 mm to 2 mm were made using a 3D laminating process. The interaction between cavitation bubbles and vessel models with different wall thicknesses was observed using a combination of high-speed photography. Results show that cavitation bubble morphology and collapse time increased and then stabilized as the vessel wall thickness increased. When the cavitation bubble was located in vessel axial line, pair of opposing micro-jets were formed along the axis of the vessel, and the peak of micro-jet velocity decreased with increasing wall thickness. However, when the cavitation bubble deviated from the vessel model center, no micro-jet towards the vessel model wall was observed. Further analysis of the vessel wall deformation under varying distances from the cavitation bubble to the vessel wall revealed that the magnitude of vessel wall stretch due to the cavitation bubble expansion was greater than that of the contraction. A comparative analysis of the interaction of between the cavitation bubble and different forms of elastic membranes showed that the oscillation period of the cavitation bubble under the influence of elastic vessel model was lower than the elastic membrane. Furthermore, the degree of deformation of elastic vessel models under the expansion of the cavitation bubble was smaller than that of elastic membranes, whereas the degree of deformation of elastic vessel models in the contraction phase of the cavitation bubble was larger than that of elastic membranes. These new findings provide important theoretical insights into the microscopic mechanisms of blood vessel potential damage caused by ultrasound-induced cavitation bubble, as well as cavitation in pipelines in hydrodynamic systems.

Keywords: Bubbles dynamics; Cavitation bubbles; High-speed imaging; Vessel deformation.

MeSH terms

  • Hydrodynamics*
  • Photography*