Fine-tuning the activities of β-KETOACYL-COA SYNTHASE 3 (KCS3) and KCS12 in Arabidopsis is essential for maintaining cuticle integrity

J Exp Bot. 2023 Nov 21;74(21):6575-6587. doi: 10.1093/jxb/erad337.

Abstract

The plant cuticle, consisting of wax and cutin, is involved in adaptations to various environments. β-Ketoacyl-CoA synthases (KCSs) usually serve as a component of the fatty acid elongation complex that participates in the production of very long-chain fatty acids and provides precursors for the synthesis of various lipids, including wax; however, we recently reported that KCS3 and KCS12 negatively regulate wax biosynthesis. In this current study, we observed that unlike KCS3-overexpressing (OE) lines, KCS12-OE lines had fused floral organs because of abnormal cuticle biosynthesis. This prompted us to compare the functions of KCS3 and KCS12 during cuticle formation. Mutation of KCS3 caused greater effects on wax production, whereas mutation of KCS12 exerted more severe effects on cutin synthesis. The double-mutant kcs3 kcs12 had significantly increased wax and cutin contents compared to either single-mutant, suggesting that KCS12 and KCS3 have additive effects on cuticle biosynthesis. Cuticle permeability was greater for the double-mutant than for the single mutants, which ultimately led to increased susceptibility to drought stress and floral-organ fusion. Taken together, our results demonstrate the regulatory roles of KCS3 and KCS12 during cuticle biosynthesis, and show that maintaining KCS3 and KCS12 expression at certain levels is essential for the formation of a functional cuticle layer.

Keywords: Arabidopsis thaliana; KCS; cuticle integrity; cutin; ketoacyl-CoA synthase; organ fusion; wax.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase
  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / metabolism
  • Gene Expression Regulation, Plant
  • Mutation
  • Permeability
  • Waxes* / metabolism

Substances

  • Arabidopsis Proteins
  • Waxes
  • 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase