The effect of rice residue management on rice paddy Si, Fe, As, and methane biogeochemistry

Sci Total Environ. 2023 Dec 10:903:166496. doi: 10.1016/j.scitotenv.2023.166496. Epub 2023 Aug 22.

Abstract

Rice production results in residues of straw and husk, and the management of these residues has implications for the sustainability of the rice agroecosystem. Rice straw is typically incorporated into soil either as fresh residue or is burned prior to incorporation. Rice husk is not typically returned to rice fields. However, rice husk contains high levels of silicon, which has been shown to decrease rice accumulation of arsenic. In this work, we studied the resulting biogeochemical changes in rice paddy soils when paddies were amended with either straw or burned straw and either no husk, husk, or burned husk over two years. Using a full-factorial design, we observed that the higher lability of rice straw carbon controlled redox-sensitive processes despite the application of husk and straw at similar carbon rates. Amending paddies with straw, rather than burned straw, increased porewater Fe and As, plant As, and methane emissions regardless of husk amendment. Husk addition provided insignificant Si to the plant despite its high concentration of Si, suggesting limited short-term mobility of Si and that long-term additions of husk or higher rates may need to be studied.

Keywords: Arsenic; Rice husk; Rice straw; Root plaque; Silicon.