Impact of temperature on the performance of compost-based landfill biocovers

J Environ Manage. 2023 Oct 15:344:118780. doi: 10.1016/j.jenvman.2023.118780. Epub 2023 Aug 21.

Abstract

Methane (CH4) emissions from landfills are a major contributor to global greenhouse gas emissions. Compost-based biocovers offer a viable approach to reduce CH4 emissions from landfills; however, the effectiveness in climates with varying temperatures is not well understood. The methane removal performances of two compost-based biocover materials (food and yard waste compost) were examined under different temperature conditions using laboratory column experiments. A reactive transport model was used to simulate the experimental results to develop a better quantitative understanding of the effect of temperature on overall methane removal efficiency. As expected, experimental results indicated that the oxidation rate was influenced by temperature, as it was reduced when the temperature decreased from 22 °C to 8 °C. However, some oxidation was observed at a lower temperature, which was confirmed by CO2 concentrations above the initial level and the observed temperatures above the exposure temperature along the height of biocover column. Furthermore, results showed that when the compost-based materials were subjected to 8 °C and then increased to 22 °C, methane oxidation within the material recovered quickly and returned to similar oxidation rates as observed before the temperature was reduced, suggesting that compost-based biocovers may not be affected by cyclic temperature variations when used in colder climates. Methane oxidation capacity was limited by the maximum oxidation rate, the biocover porosity, and the gas saturation profile that affects residence time and overall methane oxidation in the columns. The model results show that the CH4 oxidation rate was reduced by one order of magnitude when the temperature decreased from 22 °C to 8 °C. Therefore, the calculated Q10 values were 4.19 and 5.18 for the food and yard waste compost, respectively. Overall, compost-based landfill biocovers, such as food and yard waste compost, are capable of mitigate CH4 emissions from old and small landfills under different temperature conditions.

Keywords: Biocover; Compost; Landfills; Methane oxidation; Methane removal efficiency; Temperature variation.

MeSH terms

  • Climate
  • Cold Climate
  • Composting*
  • Methane
  • Temperature

Substances

  • Methane