Sharp decline in future productivity of tropical reforestation above 29°C mean annual temperature

Sci Adv. 2023 Aug 25;9(34):eadg9175. doi: 10.1126/sciadv.adg9175. Epub 2023 Aug 23.

Abstract

Tropical reforestation is among the most powerful tools for carbon sequestration. Yet, climate change impacts on productivity are often not accounted for when estimating its mitigation potential. Using the process-based forest growth model 3-PGmix, we analyzed future productivity of tropical reforestation in Central America. Around 29°C mean annual temperature, productivity sharply and consistently declined (-11% per 1°C of warming) across all tropical lowland climate zones and five tree species spanning a wide range of ecological characteristics. Under a high-emission scenario (SSP3-7.0), productivity of dry tropical reforestation nearly halved and tropical moist and rain forest sites showed moderate losses around 10% by the end of the century. Under SSP2-4.5, tropical moist and rain forest sites were resilient and tropical dry forest sites showed moderate losses (-17%). Increased vapor pressure deficit, caused by increasing temperatures, was the main driver of growth decline. Thus, to continue following high-emission pathways could reduce the effectiveness of reforestation as climate action tool.

MeSH terms

  • Carbon Sequestration*
  • Climate Change*
  • Forests
  • Gases
  • Temperature

Substances

  • Gases