NIR-II fluorescence and PA imaging guided activation of STING pathway in photothermal therapy for boosting cancer immunotherapy by theranostic thermosensitive liposomes

J Mater Chem B. 2023 Sep 13;11(35):8528-8540. doi: 10.1039/d3tb00711a.

Abstract

Photothermal immunotherapy has shown great potential for efficient cancer treatment. However, the immunosuppressive tumor microenvironment forms a heavy barrier for photothermal-induced anti-tumor immunity by inhibiting dendritic cell (DC) maturation and cytotoxic T cell response. Moreover, the lack of reliable spatiotemporal imaging modalities makes photothermal immunotherapy difficult to guide tumor ablation and monitor therapeutic outcomes in real time. Herein, we designed a theranostic thermosensitive liposome (PLDD) as a versatile nanoplatform to boost the adaptive anti-tumor immunity of photothermal immunotherapy and to achieve multiple bioimaging modalities in a real-time manner. PLDD contains two major functional components: a multifunctional photothermal agent (DTTB) and an immune potentiator STING pathway agonist (DMXAA). Upon irradiation, the heat generated by DTTB induced the immunogenic cell death (ICD) of the tumor and dissociated the structure of thermosensitive liposome to release DMXAA, which ultimately activated the STING pathway and promoted the ICD-induced immune response by increasing DC cell maturation and T cell recruitment. Moreover, the DTTB in PLDD displayed excellent second near-infrared (NIR-II) fluorescence and photoacoustic (PA) dual-modal imaging, which provided omnibearing information on the tumor and guided the subsequent therapeutic operation. Therefore, this versatile PLDD with light-triggered promotion of anti-tumor immunity and multiple spatiotemporal imaging profiles holds great potential for the future development of cancer immunotherapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fluorescence
  • Immunotherapy
  • Liposomes
  • Neoplasms*
  • Photothermal Therapy
  • Precision Medicine*

Substances

  • Liposomes