Assessment of spring water quality of Khandbari Municipality in Sankhuwasabha District, Eastern Nepal

Environ Sci Pollut Res Int. 2023 Sep;30(43):98452-98469. doi: 10.1007/s11356-023-29138-9. Epub 2023 Aug 23.

Abstract

The study was carried out in the Khandbari Municipality, Sankhuwasabha District, Eastern Nepal to document the spring location and assess the water quality of the spring water for drinking and irrigation purposes. A total of 85 springs were mapped, which are located from 274 to 2176 m in altitude. Spring water samples were collected from 33 springs in the pre-monsoon (November, 2021) and 31 springs in the post-monsoon (March, 2022). Correlation matrices, t-test, principal component analysis (PCA), Piper diagram, Gibbs diagram, water quality index (WQI), United States Salinity Laboratory (USSL) diagram, and Wilcox diagram were applied for evaluating the spring water. All the physicochemical parameters were within the Nepalese National Drinking Water Quality Standard (NDWQS) and drinking water quality guidelines of the World Health Organization (WHO) except for pH in the pre-monsoon and iron in the post-monsoon season. The main contributors to the groundwater are Na+, Ca2+, Cl-, total dissolved solids (TDS), and total hardness, which exhibit significant correlations with electrical conductivity (EC) similar to TDS, suggesting their common source of origin. Based on the WQI, spring water is excellent in the post-monsoon and excellent and good in the pre-monsoon season. Furthermore, the spring water is excellent for irrigation purposes except for the percent sodium in the post-monsoon and the magnesium ratio in the pre-monsoon season. Gibbs diagram illustrates that spring water is mainly governed by rock and precipitation dominance in some springs. The PCA indicates that anthropogenic activities (mixing of human waste and agricultural run-off in the spring water) are the main causes of contamination. Piper trilinear diagram demonstrates carbonate dissolution and silicate weathering as major processes for controlling the spring water chemistry. The study reveals that 62.5% of spring water was contaminated with microbes. For benthic macroinvertebrates, 18 springs were sampled, where nine orders and 17 families were recorded in the pre-monsoon and six orders and ten families in the post-monsoon season. The main influencing variables for macroinvertebrate assemblages are elevation, discharge, NO3-, and NH3.

Keywords: Macroinvertebrates; Nepal; Spring mapping; WQI; Water quality.

MeSH terms

  • Agriculture
  • Altitude
  • Drinking Water*
  • Humans
  • Nepal
  • Water Quality

Substances

  • Drinking Water