Combining Serum miR-144-3p and miR-652-3p as Potential Biomarkers for the Early Diagnosis and Stratification of Acute Cellular Rejection in Heart Transplantation Patients

Transplantation. 2023 Sep 1;107(9):2064-2072. doi: 10.1097/TP.0000000000004622. Epub 2023 Aug 21.

Abstract

Background: There is a dire need for specific, noninvasive biomarkers that can accurately detect cardiac acute cellular rejection (ACR) early. Previously, we described miR-144-3p as an excellent candidate for detecting grade ≥2R ACR. Now, we investigated the combination of miR-144-3p with miR-652-3p, other differentially expressed serum miRNA we previously described, to improve diagnostic accuracy mainly in mild rejection to avoid reaching severe stages.

Methods: We selected miR-652-3p from a preliminary RNA-seq study to be validated by reverse transcription-quantitative polymerase chain reaction on 212 consecutive serum samples from transplantation recipients undergoing routine endomyocardial biopsies to subsequently combine them with miR-144-3p results and investigate their diagnostic capability.

Results: We confirmed the miR-652-3p overexpression (P < 0.0001) and its capability to discriminate between patients with and without ACR of any grade (P < 0.0001). The combined serum levels of miR-144-3p and miR-652-3p were significantly higher in patients with rejection regardless of posttransplantation time (P < 0.0001). This combination resulted in a diagnostic efficacy for 1R (area under the curve = 0.794) and ≥2R (area under the curve = 0.892; P < 0.0001) that was superior to each biomarker alone. Furthermore, it was a strong independent predictor of ACR for 1R (odds ratio of 10.950; P < 0.0001) and ≥2R (odds ratio of 14.289; P < 0.01).

Conclusions: We demonstrated that an appropriate combination of blood-based biomarkers could exhibit greater efficiency for cardiac rejection diagnosis. The combined detection of abnormal expression of miR-144-3p and miR-652-3p in the serum of ACR patients can improve the diagnostic sensitivity of rejection at an early stage and contribute to increasing the diagnostic accuracy, mainly in the lower rejection grades.

MeSH terms

  • Biomarkers
  • Early Diagnosis
  • Heart
  • Heart Transplantation* / adverse effects
  • Humans
  • MicroRNAs* / genetics

Substances

  • MicroRNAs
  • Biomarkers
  • MIRN144 microRNA, human
  • MIRN652 microRNA, human