Photoacoustic Spectral Response using Ultrasound and Interferometric Sensors: A Correlation Study for a High Bandwidth Real-Time Blood Vasculature Monitoring Application in a Chick-Embryo Chorioallantoic Membrane (CAM) Model

Appl Spectrosc. 2023 Oct;77(10):1129-1137. doi: 10.1177/00037028231194088. Epub 2023 Aug 21.

Abstract

Photoacoustic (PA) spectral response technique has shown good promise in efficient preclinical tissue diagnosis by depicting mechano-biological properties due to high spatial resolution and penetration depth. The conventional PA-based system is a pump-probe technique that utilizes neodymium-doped yttrium aluminum garnet pulsed laser as a pump and an ultrasound sensor as a probe. For biomedical studies, high-speed PA signals need to be acquired, requiring higher bandwidth ultrasound sensors. While the bandwidth increases, they exhibit a very low signal-to-noise ratio that inhibits acquiring PA signals of biomedical samples. An interferometer-based probe has recently been investigated as a potential ultrasound probe for obtaining PA signals as an alternative. This optical PA detection technique offers high sensitivity by combining low acoustic impedance with high electromechanical coupling. However, there is a lack of exploration of the same for real-time biomedical studies. This work shows the development of a homodyne Mach-Zehnder interferometer-based PA spectral response (PASR) followed by a correlation study between the conventional ultrasound sensor and the interferometer-based sensor. Further, this study demonstrates the capability of continuous monitoring of vascular growth and the effect of an antidrug (Cisplatin) on the vasculature tested on a chick-embryo chorioallantoic membrane model. PASR was able to monitor growth changes within one day, which was not possible with conventional methods. This opens up potential possibilities for using this technique in biomedical applications.

Keywords: Mach-Zehnder interferometer; optical sensor; photoacoustic effect; spectral response.

MeSH terms

  • Animals
  • Chorioallantoic Membrane*
  • Correlation of Data
  • Photoacoustic Techniques* / methods
  • Spectrum Analysis
  • Ultrasonography