Molecular characterization and expression patterns of a ryanodine receptor in soybean looper, Chrysodeixis includens

Arch Insect Biochem Physiol. 2023 Nov;114(3):e22047. doi: 10.1002/arch.22047. Epub 2023 Aug 21.

Abstract

Diamide insecticides, such as chlorantraniliprole, have been widely used to control insect pests by targeting the insect ryanodine receptor (RyR). Due to the efficacious insecticidal activity of diamides, as well as an increasing number of resistance cases, the molecular structure of RyR has been studied in many economically important insects. However, no research has been conducted on diamide resistance and RyR in the soybean looper, Chrysodeixis includens, a significant crop pest. In this study, we found moderate resistance to chlorantraniliprole in a field population from Puerto Rico and sequenced the full-length cDNA of the C. includens RyR gene, which encodes a 5124 amino acid-long protein. Genomic analysis revealed that the CincRyR gene consists of 113 exons, one of the largest exon numbers reported for RyR. Alternative splicing sites were detected in the cytosolic region. The protein sequence showed high similarity to other noctuid RyRs. Conserved structural features included the selectivity filter motif critical for ryanodine binding and ion conduction, as well as various domains involved in ion transport. Two mutation sites associated with diamide resistance in other insects were screened but not found in the Puerto Rico field populations or in the susceptible lab strain. Gene expression analysis indicated high expression of RyR in the third instar larval stage, particularly in muscle-containing tissues. Furthermore, exposure to a sublethal dose of chlorantraniliprole reduced RyR expression levels after 96 h. This study provides a molecular basis for understanding RyR structure and sheds light on potential mechanisms of diamide resistance in C. includens.

Keywords: Chrysodeixis includens; chlorantraniliprole; diamide; gene expression; ryanodine receptor; soybean looper.