A portable system for economical nucleic acid amplification testing

Front Bioeng Biotechnol. 2023 Aug 2:11:1214624. doi: 10.3389/fbioe.2023.1214624. eCollection 2023.

Abstract

Introduction: Regular and rapid large-scale screening for pathogens is crucial for controlling pandemics like Coronavirus Disease 2019 (COVID-19). In this study, we present the development of a digital point-of-care testing (POCT) system utilizing microfluidic paper-based analytical devices (μPADs) for the detection of SARS-CoV-2 gene fragments. The system incorporates temperature tuning and fluorescent detection components, along with intelligent and autonomous image acquisition and self-recognition programs. Methods: The developed POCT system is based on the nucleic acid amplification test (NAAT), a well-established molecular biology technique for detecting and amplifying nucleic acids. We successfully detected artificially synthesized SARS-CoV-2 gene fragments, namely ORF1ab gene, N gene, and E gene, with minimal reagent consumption of only 2.2 μL per readout, representing a mere 11% of the requirements of conventional in-tube methods. The power dissipation of the system was low, at 6.4 W. Results: Our testing results demonstrated that the proposed approach achieved a limit of detection of 1000 copies/mL, which is equivalent to detecting 1 copy or a single RNA template per reaction. By employing standard curve analysis, the quantity of the target templates can be accurately determined. Conclusion: The developed digital POCT system shows great promise for rapid and reliable detection of SARS-CoV-2 gene fragments, offering a cost-effective and efficient solution for controlling pandemics. Its compatibility with other diagnostic techniques and low reagent consumption make it a viable option to enhance healthcare in resource-limited areas.

Keywords: NAAT; POCT; SARS-CoV-2 template detection; automatic image processing; paper microfluidics.

Grants and funding

This work was supported by the National Natural Science Foundation of China (grant nos 62173093, 61604042, and 52005107), the Fujian Provincial Natural Science Foundation (grant nos 2020Y0014 and 2017J01501), and the Fujian Province Outstanding Youth Talent Program (grant no. 601931).