Research of Pesticide Metabolites in Human Brain Tumor Tissues by Chemometrics-Based Gas Chromatography-Mass Spectrometry Analysis for a Hypothetical Correlation between Pesticide Exposure and Risk Factor of Central Nervous System Tumors

ACS Omega. 2023 Aug 3;8(32):29812-29835. doi: 10.1021/acsomega.3c04592. eCollection 2023 Aug 15.

Abstract

Pesticides are widely used, resulting in continuing human exposure with potential health impacts. Some exposures related to agricultural works have been associated with neurological disorders. Since the 2000s, the hypothesis of the role of pesticides in the occurrence of central nervous system (CNS) tumors has been better documented in the literature. However, the etiology of childhood brain cancers still remains largely unknown. The major objective of this work was to assess the potential role of pesticide exposure as a risk factor for CNS tumors based on questionnaires and statistical analysis of information collected from patients hospitalized in the Neurosurgery Department of the Habib Bourguiba Hospital Medium in Sfax, Tunisia, during the period from January 1, 2022, to May 31, 2023. It also aimed to develop a simple and rapid analytical method by the gas chromatography-mass spectrometry technique for the research traces of pesticide metabolites in some collected human brain tumor tissues in order to more emphasize our hypothesis for such a correlation between pesticide exposure and brain tumor development. Patients with a history of high-risk exposure were selected to conduct further analysis. Chemometric methods were adapted to discern intrinsic variation between pathological and control groups and ascertain effective separation with the identification of differentially expressed metabolites accountable for such variations. Three samples revealed traces of pesticide metabolites that were mostly detected at an early age. The histopathological diagnosis was medulloblastoma for a 10-year-old child and high-grade gliomas for 27- and 35-year-old adults. The bivariate analyses (odds ratio >1 and P value <5%) confirmed the great probability of developing cancer by an exposure case. The Cox proportional hazards model revealed the risk of carcinogenicity beyond the age of 50 as a long-term effect of pesticide toxicity. Our study supports the correlation between pesticide exposure and the risk of development of human brain tumors, suggesting that preconception pesticide exposure, and possibly exposure during pregnancy, is associated with an increased childhood brain tumor risk. This hypothesis was enhanced in identifying traces of metabolites from the carbamate insecticide class known for their neurotoxicity and others from pyridazinone, organochlorines (OCs), triazole fungicide, and N-nitroso compounds known for their carcinogenicity. The 2D-OXYBLOT analysis confirmed the neurotoxicity effect of insecticides to induce oxidative damage in CNS cells. Aldicarb was implicated in brain carcinogenicity confirmed by the identification of oxime metabolites in a stress degradation study. Revealing "aziridine" metabolites from the OC class may better emphasize the theory of detecting traces of pesticide metabolites at an early age. Overall, our findings lead to the recommendation of limiting the residential use of pesticides and the support of public health policies serving this objective that we need to be vigilant in the postmarketing surveillance of human health impacts.