Controlling the surface silanol density in capillary columns and planar silicon via the self-limiting, gas-phase deposition of tris(dimethylamino)methylsilane, and quantification of surface silanols after silanization by low energy ion scattering

J Chromatogr A. 2023 Sep 27:1707:464248. doi: 10.1016/j.chroma.2023.464248. Epub 2023 Jul 27.

Abstract

Surface silanols (Si-OH) play a vital role on fused silica surfaces in chromatography. Here, we used an atmospheric-pressure, gas-phase reactor to modify the inner surface of a gas chromatography, fused silica capillary column (0.53 mm ID) with a small, reactive silane (tris(dimethylamino)methylsilane, TDMAMS). The deposition of TDMAMS on planar witness samples around the capillary was confirmed with X-ray photoelectron spectroscopy (XPS), ex situ spectroscopic ellipsometry (SE), and wetting. The number of surface silanols on unmodified and TDMAMS-modified native oxide-terminated silicon were quantified by tagging with dimethylzinc (DMZ) via atomic layer deposition (ALD) and counting the resulting zinc atoms with high sensitivity-low energy ion scattering (HS-LEIS). A bare, clean native oxide - terminated silicon wafer has 3.66 OH/nm2, which agrees with density functional theory (DFT) calculations from the literature. After TDMAMS modification of native oxide-terminated silicon, the number of surface silanols decreases by a factor of ca. 10 (to 0.31 OH/nm2). Intermediate surface testing (IST) was used to characterize the surface activities of functionalized capillaries. It suggested a significant deactivation/passivation of the capillary with some surface silanols remaining; the modified capillary shows significant deactivation compared to the native/unmodified fused silica tubing. We believe that this methodology for determining the number of residual silanols on silanized fused silica will be enabling for chromatography.

Keywords: Atomic layer deposition; Capillary column; Dimethylzinc; Fused silica; Low energy ion scattering; Silane; Surface silanol; Tag-and-Count.

MeSH terms

  • Capillaries
  • Oxides
  • Silanes*
  • Silicon Dioxide
  • Silicon*

Substances

  • Silicon
  • silanol
  • Silanes
  • Silicon Dioxide
  • Oxides