State, synthesis, perspective applications, and challenges of Graphdiyne and its analogues: A review of recent research

Adv Colloid Interface Sci. 2023 Sep:319:102969. doi: 10.1016/j.cis.2023.102969. Epub 2023 Jul 27.

Abstract

Carbon materials technology provides the possibility of synthesizing low-cost, outstanding performance replacements to noble-metal catalysts for long-term use. Graphdiyne (GDY) is a carbon allotrope with an extremely thin atomic thickness. It consists of carbon elements, that are hybridized with both sp. and sp2, resulting in a multilayered two-dimensional (2D) configuration. Several functional models suggest, that GDY contains spontaneously existing band structure with Dirac poles. This is due to the non-uniform interaction among carbon atoms, which results from various fusions and overlapping of the 2pz subshell. Unlike other carbon allotropes, GDY has Dirac cone arrangements, that in turn give it inimitable physiochemical characteristics. These properties include an adjustable intrinsic energy gap, high speeds charging transport modulation efficiency, and exceptional conductance. Many scientists are interested in such novel, linear, stacked materials, including GDY. As a result, organized synthesis of GDY has been pursued, making it one of the first synthesized GDY materials. There are several methods to manipulate the band structure of GDY, including applying stresses, introducing boron/nitrogen loading, utilizing nanowires, and hydrogenations. The flexibility of GDY can be effectively demonstrated through the formation of nano walls, nanostructures, nanotube patterns, nanorods, or structured striped clusters. GDY, being a carbon material, has a wide range of applications owing to its remarkable structural and electrical characteristics. According to subsequent research, the GDY can be utilized in numerous energy generation processes, such as electrochemical water splitting (ECWS), photoelectrochemical water splitting (PEC WS), nitrogen reduction reaction (NRR), overall water splitting (OWS), oxygen reduction reaction (ORR), energy storage materials, lithium-Ion batteries (LiBs) and solar cell applications. These studies suggested that the use of GDY holds significant potential for the development and implementation of efficient, multimodal, and intelligent catalysts with realistic applications. However, the limitation of GDY and GDY-based composites for forthcoming studies are similarly acknowledged. The objective of these studies is to deliver a comprehensive knowledge of GDY and inspire further advancement and utilization of these unique carbon materials.

Keywords: Graphdiyne; Morphological characteristics; Multiple dimensional configuration; Perspective functionality; Synthesized technique.

Publication types

  • Review