Role of water shear force for microplastics fragmentation into nanoplastics

Environ Res. 2023 Nov 15;237(Pt 1):116916. doi: 10.1016/j.envres.2023.116916. Epub 2023 Aug 18.

Abstract

Wastewater treatment plants (WWTPs) are major recipients of microplastics (MPs) that break down into nanoplastics (NPs) during wastewater treatment through physical, chemical, and biological processes. In particular, mechanical stress induced by the mixing process commonly used in WWTPs is thought to play a crucial role in the production of secondary MPs/NPs, which are then discharged into the open water environment through the WWTP effluent. This study investigated the fragmentation of 250 and 106 μm-sized pristine and weathered polystyrene (PS) particles using a four-blade mechanical impeller. At an energy density level of 100 kJ/L, the 250 and 106 μm-sized pristine PS particles were broken down into mean sizes of 120.6 ± 19.1 and 95.6 ± 16.8 nm, respectively. The smallest sizes were found to be 90.9 ± 17.8 and 72.4 ± 19.6 nm due to the breakdown of 250 and 106 μm-sized weathered PS particles, respectively. The morphology of the PS particles after fragmentation also demonstrated the initiation of surface damage, such as cracks, pores and rough structures. This surface crack propagation, caused by mechanically induced water shear force, was identified as the primary mechanism of MP fragmentation into NPs. It was also found that NP levels significantly increased after 40 min of mixing, with at least a 28-fold increase in water solution at an energy density of 32 kJ/L. These results clearly show that the breakdown of MPs into NPs is a continuous process during wastewater treatment, posing a significant threat to the water environment through NP release by WWTP effluents.

Keywords: Fragmentation; Microplastics; Nanoplastics; Wastewater treatment plant; Water shear force.