Sequences, phylogeny and evolution of mitochondrial delta-1-pyrroline-5-carboxylate dehydrogenases (ALDH4A1). Evidence for a second locus (ALDH4A2) in Drosophila

Chem Biol Interact. 2023 Sep 25:383:110679. doi: 10.1016/j.cbi.2023.110679. Epub 2023 Aug 18.

Abstract

ALDH4A1 genes encode mitochondrial enzymes of delta-1-pyrroline-5-carboxylate metabolism, generating glutamate from either proline or ornithine. Analyses were undertaken of several vertebrate and invertebrate genomes using reported human and mouse ALDH4A1 amino acid sequences. ALDH4A1 sequences and structures were highly conserved, including residues involved in catalysis, coenzyme binding and enzyme structure, previously reported for mouse and human ALDH4A1. The human ALDH4A1 gene contained 15 coding exons and was more highly expressed in human liver and kidney cortex. Vertebrate ALDH4A1 mitochondrial leader sequences exhibited diverse sequences. Phylogeny studies supported the appearance of the ALDH4A1 gene in invertebrate evolution which has been conserved and retained throughout subsequent vertebrate evolution as a single ALDH4A1 gene. Exceptions included polyploidy observed for the Atlantic salmon (Salmo salar) and African toad (Xenopus laevis) genes. An examination of ALDH4A1 sequences from related Drosophila species supported the appearance of a second ALDH4A gene (ALDH4A2) and time dependent evolutionary changes over the past 50 million years for both genes.

Keywords: ALDH4A1; Aldehyde dehydrogenase; Delta-1-pyrroline-5-carboxylate metabolism; Drosophila ALDH4A2 gene; Enzyme structure; Evolution; Primates; Rodents.

MeSH terms

  • 1-Pyrroline-5-Carboxylate Dehydrogenase
  • Animals
  • Drosophila* / genetics
  • Glutamic Acid*
  • Humans
  • Mice
  • Oxidoreductases
  • Phylogeny

Substances

  • 1-Pyrroline-5-Carboxylate Dehydrogenase
  • ALDH4A1 protein, human
  • delta-1-pyrroline-5-carboxylate
  • Glutamic Acid
  • Oxidoreductases