Impacts of exposure to nanopolystyrene and/or chrysene at ambient concentrations on neurotoxicity in Siniperca chuatsi

Chemosphere. 2023 Nov:340:139830. doi: 10.1016/j.chemosphere.2023.139830. Epub 2023 Aug 17.

Abstract

Health risks caused by widespread environmental pollutants such as nanopolystyrene (NP) and chrysene (CHR) in aquatic ecosystems have aroused considerable concern. The present study established juvenile Mandarin fish (Siniperca chuatsi) models of NP and/or CHR exposure at ambient concentrations for 21 days to systematically investigate the underlying neurotoxicity mechanisms. The results showed that single and combined exposure to NP and CHR not only reduced the density of small neuronal cells in the grey matter layer of the optic tectum, but also induced brain oxidative stress according to physiological parameters including CAT, GSH-Px, SOD, T-AOC, and MDA. The co-exposure alleviated the histopathological damage, compared to NP and CHR single exposure group. These results indicate that NP and/or CHR causes neurotoxicity in S. chuatsi, in accordance with decreased acetylcholinesterase activity and altered expression of several marker genes of nervous system functions and development including c-fos, shha, elavl3, and mbpa. Transcriptomics analysis was performed to further investigate the potential molecular mechanisms of neurotoxicity. We propose that single NP and co-exposure induced oxidative stress activates MMP, which degrades tight junction proteins according to decreased expression of claudin, JAM, caveolin and TJP, ultimately damaging the integrity of the blood-brain barrier in S. chuatsi. Remarkably, the co-exposure exacerbated the blood-brain barrier disruption. More importantly, single NP and co-exposure induced neuronal apoptosis mainly activates the expression of apoptosis-related genes through the death receptor apoptosis pathway, while CHR acted through both death receptor apoptosis and endoplasmic reticulum apoptosis pathways. Additionally, subchronic CHR exposure caused neuroinflammation, supported by activation of TNF/NF-κB and JAK-STAT signaling pathways via targeting-related genes, while the co-exposure greatly alleviated the neuroinflammation. Collectively, our findings illuminate the underlying neurotoxicity molecular mechanisms of NP and/or CHR exposure on aquatic organisms.

Keywords: Blood-brain barrier disruption; Neuroinflammation; Neuronal apoptosis; Oxidative stress; S. chuatsi.

MeSH terms

  • Acetylcholinesterase*
  • Animals
  • Chrysenes*
  • Ecosystem
  • Fishes
  • Neuroinflammatory Diseases
  • Receptors, Death Domain

Substances

  • chrysene
  • Chrysenes
  • Acetylcholinesterase
  • Receptors, Death Domain