Phylogenetic diversity, distribution, and gene structure of the pyruvic oxime dioxygenase involved in heterotrophic nitrification

Antonie Van Leeuwenhoek. 2023 Oct;116(10):1037-1055. doi: 10.1007/s10482-023-01862-9. Epub 2023 Aug 18.

Abstract

Some heterotrophic microorganisms carry out nitrification to produce nitrite and nitrate from pyruvic oxime. Pyruvic oxime dioxygenase (POD) is an enzyme that catalyzes the degradation of pyruvic oxime to pyruvate and nitrite from the heterotrophic nitrifying bacterium Alcaligenes faecalis. Sequence similarity searches revealed the presence of genes encoding proteins homologous to A. faecalis POD in bacteria of the phyla Proteobacteria and Actinobacteria and in fungi of the phylum Ascomycota, and their gene products were confirmed to have POD activity in recombinant experiments. Phylogenetic analysis further classified these POD homologs into three groups. Group 1 POD is mainly found in heterotrophic nitrifying Betaproteobacteria and fungi, and is assumed to be involved in heterotrophic nitrification. It is not clear whether group 2 POD, found mainly in species of the Gammaproteobacteria and Actinobacteria, and group 3 POD, found simultaneously with group 1 POD, are involved in heterotrophic nitrification. The genes of bacterial group 1 POD comprised a single transcription unit with the genes related to the metabolism of aromatic compounds, and many of the genes group 2 POD consisted of a single transcription unit with the gene encoding the protein homologous to 4-hydroxy-tetrahydrodipicolinate synthase (DapA). LysR- or Cro/CI-type regulatory genes were present adjacent to or in the vicinity of these POD gene clusters. POD may be involved not only in nitrification, but also in certain metabolic processes whose functions are currently unknown, in coordination with members of gene clusters.

Keywords: Ammonia oxidation; Heterotrophic nitrification; Nitrogen cycle; Pyruvic oxime dioxygenase.

MeSH terms

  • Actinobacteria*
  • Dioxygenases* / genetics
  • Nitrification
  • Nitrites
  • Phylogeny

Substances

  • Dioxygenases
  • pyruvatoxime
  • Nitrites