Highly sensitive digital detection of SARS-CoV-2 nucleocapsid protein through single-molecule counting

Anal Bioanal Chem. 2023 Oct;415(25):6155-6164. doi: 10.1007/s00216-023-04886-2. Epub 2023 Aug 19.

Abstract

Nucleocapsid protein (NP) is one of the structural proteins of SARS-CoV-2 which is stable, well-conserved, highly immunogenic, and abundantly expressed due to the host's adaptive immune response, making it a promising antigenic biomarker for the early and rapid identification and diagnosis of SARS-CoV-2. Traditional antigen analytical methods with NP as the detection marker often have insufficient sensitivity. To achieve rapid and highly sensitive detection of NP, we constructed a novel single-molecule (digital) fluorescence-linked immunosorbent assay (FLISA) based on streptavidin-modified transparent 96-well microplates. Streptavidin was immobilized on the microplate under optimized conditions with a 15 mM carbonate buffer solution (pH 9.6) as the coating solution, biotinylated antibodies conjugated with streptavidin as capture probes, and carboxylated fluorescent microsphere-conjugated monoclonal antibodies (FMs-mAbs) as fluorescent probes. Individual sandwich immunolabeled complexes of the SARS-CoV-2 diagnostic marker NP were detected and counted though wide-field inverted fluorescence microscopy (1.1 × 1.4 mm2). FLISA had a linear detection range of 0.2 pg/mL to 200 ng/mL and a limit of detection (LOD) of 0.73 fg/mL and 8 fg/mL for NP in phosphate buffer saline and spiked nasal swab samples, respectively. The sensitivity was much higher than commercial antigen detection kits, providing wide detection prospects in future clinical diagnosis, environmental monitoring, and other fields.

Keywords: Antigen detection; Digital immunodetection; Fluorescence microspheres; Nucleocapsid protein; SARS-CoV-2; Single-molecule counting.