Multi-hazard exposure mapping under climate crisis using random forest algorithm for the Kalimantan Islands, Indonesia

Sci Rep. 2023 Aug 18;13(1):13472. doi: 10.1038/s41598-023-40106-8.

Abstract

Numerous natural disasters that threaten people's lives and property occur in Indonesia. Climate change-induced temperature increases are expected to affect the frequency of natural hazards in the future and pose more risks. This study examines the consequences of droughts and forest fires on the Indonesian island of Kalimantan. We first create maps showing the eleven contributing factors that have the greatest impact on forest fires and droughts related to the climate, topography, anthropogenic, and vegetation. Next, we used RF to create single and multi-risk maps for forest fires and droughts in Kalimantan Island. Finally, using the Coupled Model Intercomparison Project (CMIP6) integrated evaluation model, a future climate scenario was applied to predict multiple risk maps for RCP-SSP2-4.5 and RCP-SSP5-8.5 in 2040-2059 and 2080-2099. The probability of a 22.6% drought and a 21.7% forest fire were anticipated to have an influence on the study's findings, and 2.6% of the sites looked at were predicted to be affected by both hazards. Both RCP-SSP2-4.5 and RCP-SSP5-8.5 have an increase in these hazards projected for them. Researchers and stakeholders may use these findings to assess risks under various mitigation strategies and estimate the spatial behavior of such forest fire and drought occurrences.