4D Printed Shape-Memory Elastomer for Thermally Programmable Soft Actuators

ACS Appl Mater Interfaces. 2023 Aug 30;15(34):40923-40932. doi: 10.1021/acsami.3c07436. Epub 2023 Aug 18.

Abstract

Polymeric shape-memory elastomers can recover to a permeant shape from any programmed deformation under external stimuli. They are mostly cross-linked polymeric materials and can be shaped by three-dimensional (3D) printing. However, 3D printed shape-memory polymers so far only exhibit elasticity above their transition temperature, which results in their programmed shape being inelastic or brittle at lower temperatures. To date, 3D printed shape-memory elastomers with elasticity both below and above their transition temperature remain an elusive goal, which limits the application of shape-memory materials as elastic materials at low temperatures. In this paper, we printed, for the first time, a custom-developed shape-memory elastomer based on polyethylene glycol using digital light processing, which possesses elasticity and stretchability in a wide temperature range, below and above the transition temperature. Young's modulus in these two states can vary significantly, with a difference of up to 2 orders of magnitude. This marked difference in Young's modulus imparts excellent shape-memory properties to the material. The difference in Young's modulus at different temperatures allows for the programming of the pneumatic actuators by heating and softening specific areas. Consequently, a single actuator can exhibit distinct movement modes based on the programming process it undergoes.

Keywords: 4D printing; digital light processing; programmable pneumatic actuators; shape memory elastomers; shape memory polymers.