Component stabilizing mechanism of membrane-separated hydrolysates on frozen surimi

Food Chem. 2024 Jan 15:431:137114. doi: 10.1016/j.foodchem.2023.137114. Epub 2023 Aug 9.

Abstract

This study investigated the cryoprotective mechanism of ultrafiltration membrane-separated fractions (>10 kDa, UF-1; 3-10 kDa, UF-2; and <3 kDa, UF-3) derived from silver carp hydrolysates on frozen surimi. The surimi gel incorporating UF-3 exhibited a compact, continuous structure with uniform pores, even after undergoing six freeze-thaw (F-T) cycle, with the minimal reduction in entrapped water (from 95.1 % to 91.1 %) and least increase in free water (from 4.5 % to 6.6 %) as revealed by SEM and LF-NMR analysis. Through molecular docking analysis, three major peptides in UF-3 were identified to form robust interactions with the myosin head pocket, facilitated by hydrogen bonds, electrostatic forces, and hydrophobic interactions. Furthermore, molecular dynamics simulations demonstrated that the three peptides effectively prevented myosin from unfolding and aggregating by tightly binding to basic amino acids (Arg, Lys) and hydrophobic amino acids (Phe, Leu, Ile, Met, and Val) residues in the myosin head pocket, primarily governed by electrostatic energies (-156.95, -321.38, and -267.53 kcal/mol, respectively) and van der Waals energies (-395.05, -347.46, and -319.16 kcal/mol, respectively). Notably, the key action site was identified as Lys599 on myosin. The hydrophilic and hydrophobic hotspot residues of the peptides worked synergistically to stabilize the myosin structure in frozen surimi.

Keywords: Antifreeze peptides; Molecular dynamics simulation; Surimi gel; Synergistic action; Ultrafiltration.

MeSH terms

  • Amino Acids*
  • Animals
  • Carps*
  • Hydrogen Bonding
  • Molecular Docking Simulation
  • Water

Substances

  • Amino Acids
  • Water