Super Interferometric Range Resolution

Phys Rev Lett. 2023 Aug 4;131(5):053803. doi: 10.1103/PhysRevLett.131.053803.

Abstract

We probe the fundamental underpinnings of range resolution in coherent remote sensing. We use a novel class of self-referential interference functions to show that we can greatly improve upon currently accepted bounds for range resolution. We consider the range resolution problem from the perspective of single-parameter estimation of amplitude versus the traditional temporally resolved paradigm. We define two figures of merit: (i) the minimum resolvable distance between two depths and (ii) for temporally subresolved peaks, the depth resolution between the objects. We experimentally demonstrate that our system can resolve two depths greater than 100× the inverse bandwidth and measure the distance between two objects to approximately 20 μm (35 000 times smaller than the Rayleigh-resolved limit) for temporally subresolved objects using frequencies less than 120 MHz radio waves.