Enhanced photodegradation of p-arsanilic acid by oxalate in goethite heterogeneous system under UVA irradiation

Environ Sci Pollut Res Int. 2023 Aug 18. doi: 10.1007/s11356-023-29289-9. Online ahead of print.

Abstract

The widespread used organoarsenicals have drawn attention for decades due to their potential environment risks. In this study, a heterogeneous system of goethite/oxalate irradiated using UVA light (λ = 365 nm) was applied for the removal of ASA, a kind of organoarsenicals used in animal feeding operations as additives, from the aqueous phase through photodegradation. Results showed that the presence of 5 mM of oxalate significantly enhanced the photodegradation efficiency of ASA in the 0.1 g/L of goethite suspended system from 28 to ~100% within 180 min reaction at pH 5. Acid conditions favored the photoreaction rate, compared with neutral and basic conditions. This reaction process was also influenced by the initial concentration of oxalate and ASA. Furthermore, the mechanism study was conducted by quenching experiments and revealed the important roles of ·OH in the degradation of ASA in the goethite/oxalate/UVA system. By analyzing the reaction products, both inorganic arsenic (As(III) and As(V)) and ammonia were detected during the photodegradation of ASA. These findings help to gain a better understanding of the geochemical behavior of ASA in surface water and can also provide a potential treatment method for the organoarsenicals contaminated water.

Keywords: Goethite; Oxalate; Photodegradation; Reactive oxygen species; UVA light; p-Arsanilic acid.