[Based on the Hippo signaling pathway to explore the mechanism of autophagy in lung injury of acute respiratory distress syndrome induced by sepsis]

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023 Aug;35(8):884-888. doi: 10.3760/cma.j.cn121430-20220705-00633.
[Article in Chinese]

Abstract

The systemic inflammatory response caused by various pathogenic factors is a key stage in the development of acute respiratory distress syndrome (ARDS). At present, suppression of the inflammatory response and symptomatic support are main methods for the treatment of ARDS. Alveolar epithelial autophagy has an important role in the regulation of the inflammatory response in ARDS. Autophagy is a normal immune mechanism in the body, and it is a metabolic process by which phagocytes degrade intracellular components with the help of lysosomes to maintain intracellular homeostasis. Current studies have shown that pathogenic factors both inside and outside the lung can cause alveolar epithelial cells to form an unfavorable internal environment of hypoxia, starvation, infection, and even apoptosis by triggering inflammatory responses, leading to autophagy dysfunction. Excessive autophagy activation can continue to aggravate inflammatory responses. Autophagy related proteins such as Beclin1, microtubule-associated protein 1 light chain 3 (LC3), mammalian target of rapamycin (mTOR), and p62 are common autophagic markers in current research, which play a crucial role in regulating the autophagic process and the development of lung injury. Therefore, the expression of cellular autophagy genes can be used as early markers and important mechanisms of lung injury in septic ARDS. The Hippo signaling pathway is derived from the protein kinase Hippo in Drosophila, and the Hippo and autophagy are two conserved pathways that are essential for the protection of homeostasis in vivo. The mutual regulation of Hippo signaling pathway and autophagy is currently a hot topic in the academic community. This paper reviews the relevant literature to explore whether the Hippo signaling pathway can regulate cellular autophagy to alleviate the inflammatory response in septic ARDS, so as to provide further research directions for the treatment of ARDS.

Publication types

  • Review
  • English Abstract

MeSH terms

  • Autophagy
  • Hippo Signaling Pathway
  • Humans
  • Lung Injury*
  • Respiratory Distress Syndrome*
  • Sepsis*