Sensitizer-Free Photochemical Regeneration of Benzimidazoline Organohydride

J Org Chem. 2023 Sep 1;88(17):12276-12288. doi: 10.1021/acs.joc.3c00898. Epub 2023 Aug 17.

Abstract

Organohydrides are an important class of organic compounds that can provide hydride anions for chemical and biochemical reactions, as demonstrated by reduced nicotinamide adenine dinucleotides serving as important natural redox cofactors. The coupling of hydride transfer from the organohydride to the substrate and subsequent regeneration of the organohydride from its oxidized form can realize organohydride-catalyzed reduction reactions. Depending on the structure of the organohydride, its hydridicity and ease of regeneration vary. Benzimidazoline (BIH) is one of the strongest synthetic C-H hydride donors; however, its reductive regeneration requires highly reducing conditions. In this study, we synthesized various oxidized and reduced forms of BIH derivatives with aryl groups at the 2-position and investigated their photophysical and electrochemical properties. 4-(Dimethylamino)phenyl-substituted BIH exhibited salient red-shifted absorption compared with other synthesized BIH derivatives, and visible-light-driven regeneration without using an external photosensitizer was achieved. This knowledge has significant implications for the future development of solar-energy-based catalytic photoreduction technologies that utilize organohydride regeneration strategies.