Interrelationship of lipid aldehydes (MDA, 4-HNE, and 4-ONE) mediated protein oxidation in muscle foods

Crit Rev Food Sci Nutr. 2023 Aug 17:1-17. doi: 10.1080/10408398.2023.2245029. Online ahead of print.

Abstract

Proteins and essential fatty acids are crucial components of the human diet. However, lipids and proteins are susceptible to oxidative modification during food processing resulting in changes to their structural characteristics and functional properties. Food products rich in polyunsaturated fatty acids are highly susceptible to lipid peroxidation and generate bifunctional reactive aldehydes. Bifunctional aldehydes such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), and 4-oxo-2-nonenal (4-ONE) readily bind to protein nucleophiles and lead to intra- or intermolecular protein cross-linking. In comparison with lipid oxidation, the degradation of proteins by prooxidants appears to be more intricate and results in a greater diversity of oxidation products. Although individual oxidation processes involving lipids and proteins received increasing attention in the past decades, the interactions between those aldehydes and protein oxidation in food have not been extensively explored. Studies indicate that the reactions of lipid and protein oxidation may take place simultaneously or independently, but oxidation products that arose from one reaction may further interact with lipids or proteins. The present review presents a perspective on reactive aldehydes and the role of aldehydes in inducing protein oxidation in muscle foods. Emphasis is focused on the interaction mechanism of the lipid, protein, and myoglobin protein oxidations. In addition, the occurrence of aldehydes derived from lipid oxidation in food systems as well as the endogenous antioxidant peptides or amino acids in meat and plant proteins are also briefly described.

Keywords: 4-hydroxy-2-nonenal; 4-oxo-2-nonenal; Lipid oxidation; antioxidant peptides; malondialdehyde; protein oxidation.

Publication types

  • Review