Development of electronic nose for detection of micro-mechanical damages in strawberries

Front Nutr. 2023 Jul 31:10:1222988. doi: 10.3389/fnut.2023.1222988. eCollection 2023.

Abstract

A self-developed portable electronic nose and its classification model were designed to detect and differentiate minor mechanical damage to strawberries. The electronic nose utilises four metal oxide sensors and four electrochemical sensors specifically calibrated for strawberry detection. The selected strawberries were subjected to simulated damage using an H2Q-C air bath oscillator at varying speeds and then stored at 4°C to mimic real-life mechanical damage scenarios. Multiple feature extraction methods have been proposed and combined with Principal Component Analysis (PCA) dimensionality reduction for comparative modelling. Following validation with various models such as SVM, KNN, LDA, naive Bayes, and subspace ensemble, the Grid Search-optimised SVM (GS-SVM) method achieved the highest classification accuracy of 0.84 for assessing the degree of strawberry damage. Additionally, the Feature Extraction ensemble classifier achieved the highest classification accuracy (0.89 in determining the time interval of strawberry damage). This experiment demonstrated the feasibility of the self-developed electronic nose for detecting minor mechanical damage in strawberries.

Keywords: classification model; electronic nose; embedded systems; food inspection; mechanical damage; non-destructive testing; strawberry.