Treating solid tumors with TCR-based chimeric antigen receptor targeting extra domain B-containing fibronectin

J Immunother Cancer. 2023 Aug;11(8):e007199. doi: 10.1136/jitc-2023-007199.

Abstract

Background: The suppression of chimeric antigen receptor (CAR) T cells by the tumor microenvironment (TME) is a crucial obstacle in the T-cell-based treatment of solid tumors. Extra domain B (EDB)-fibronectin is an oncofetal antigen expressed on the endothelium layer of the neovasculature and cancer cells. Though recognized as a T cell therapy target, engineered CAR T cells thus far have failed to demonstrate satisfactory in vivo efficacy. In this study, we report that targeting EDB-fibronectin by redirected TCR-CAR T cells (rTCR-CAR) bypasses the suppressive TME for solid tumor treatment and sufficiently suppressed tumor growth.We generated EDB-targeting CAR by fusing single-chain variable fragment to CD3ε, resulting in rTCR-CAR. Human primary T cells and Jurkat cells were used to study the EDB-targeting T cells. Differences to the traditional second-generation CAR T cell in signaling, immune synapse formation, and T cell exhaustion were characterized. Cytotoxicity of the rTCR-CAR T cells was tested in vitro, and therapeutic efficacies were demonstrated using xenograft models.

Methods: RESULTS: In the xenograft models, the rTCR-CAR T cells demonstrated in vivo efficacies superior to that based on traditional CAR design. A significant reduction in tumor vessel density was observed alongside tumor growth inhibition, extending even to tumor models established with EDB-negative cancer cells. The rTCR-CAR bound to immobilized EDB, and the binding led to immune synapse structures superior to that formed by second-generation CARs. By a mechanism similar to that for the conventional TCR complex, EDB-fibronectin activated the rTCR-CAR, resulting in rTCR-CAR T cells with low basal activation levels and increased in vivo expansion.

Conclusion: Our study has demonstrated the potential of rTCR-CAR T cells targeting the EDB-fibronectin as an anticancer therapeutic. Engineered to possess antiangiogenic and cytotoxic activities, the rTCR-CAR T cells showed therapeutic efficacies not impacted by the suppressive TMEs. These combined characteristics of a single therapeutic agent point to its potential to achieve sustained control of solid tumors.

Keywords: Cell Engineering; Drug Evaluation, Preclinical; Immunotherapy, Adoptive; Neovasularization, Pathologic; Receptors, Chimeric Antigen.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Membrane
  • Disease Models, Animal
  • Fibronectins
  • Humans
  • Immunotherapy, Adoptive*
  • Jurkat Cells
  • Neoplasms* / therapy
  • Receptors, Chimeric Antigen / genetics

Substances

  • Fibronectins
  • Receptors, Chimeric Antigen