Charge transfer enhanced magnetic correlations in type-II multiferroic Co3TeO6

J Chin Chem Soc. 2021 Mar;68(3):10.1002/jccs.202000472. doi: 10.1002/jccs.202000472.

Abstract

Magnetic structure of the Co ions in monoclinic Co3TeO6 in the antiferroelectric state at 16 K has been determined by neutron powder together with single-crystal diffractions. The indices of the magnetic reflections that appear at the incommensurate positions were determined by diffractions from a single crystal, which allow to uniquely identify the magnetic modulation vector. There are two crystallographically distinct Co layers. Magnetic incommensurability appears in the Co spins in the layers comprising zig-zag chains, with a magnetic modulation vector of (0.357, 0.103, 0.121) at 3 K but changes to (0.4439, 0, 0.137) at 16 K, while the Co ions in the honeycomb webs form a collinear antiferromagnetic structure. Thermal reduction rate of the Co moments in the honeycomb webs was found to be much smaller than those in the zigzag chains. Shifting of large amounts of electronic charge into the Co─O bonds in the honeycomb webs on warming is used to understand the behavior.

Keywords: charge redistribution; magnetic structure; multiferroic; neutron diffraction.