Insulating traveling-wave electrophoresis

Phys Rev E. 2023 Jul;108(1-2):015104. doi: 10.1103/PhysRevE.108.015104.

Abstract

Traveling-wave electrophoresis (TWE) is a method for transporting charged colloidal particles used in many microfluidic techniques for particle manipulation and fractionation. This method exploits the traveling-wave components of the electric field generated by an array of electrodes subjected to ac voltages with a phase delay between neighboring electrodes. In this article, we propose an alternative way of generating traveling-wave electric fields in microchannels. We apply a rotating electric field around a cylindrical insulating micropillar and the resulting traveling-wave modes induce particle drift around the cylinder. We term this phenomenon insulating traveling-wave electrophoresis (i-TWE) to distinguish it from standard TWE performed with arrays of microelectrodes. We characterized the particle drift experimentally and show a quantitative comparison of the particle velocity with theoretical predictions. Excellent agreement is found when the influence of electro-osmosis on the channel walls is also considered.