Developments in small-angle X-ray scattering (SAXS) for characterizing the structure of surfactant-macromolecule interactions and their complex

Int J Biol Macromol. 2023 Aug 13:251:126288. doi: 10.1016/j.ijbiomac.2023.126288. Online ahead of print.

Abstract

The surfactant-macromolecule interactions (SMI) are one of the most critical topics for scientific research and industrial application. Small-angle X-ray scattering (SAXS) is a powerful tool for comprehensively studying the structural and conformational features of macromolecules at a size ranging from Angstroms to hundreds of nanometers with a time-resolve in milliseconds scale. The SAXS integrative techniques have emerged for comprehensively analyzing the SMI and the structure of their complex in solution. Here, the various types of emerging interactions of surfactant with macromolecules, such as protein, lipid, nuclear acid, polysaccharide and virus, etc. have been systematically reviewed. Additionally, the principle of SAXS and theoretical models of SAXS for describing the structure of SMI as well as their complex has been summarized. Moreover, the recent developments in the applications of SAXS for charactering the structure of SMI have been also highlighted. Prospectively, the capacity to complement artificial intelligence (AI) in the structure prediction of biological macromolecules and the high-throughput bioinformatics sequencing data make SAXS integrative structural techniques expected to be the primary methodology for illuminating the self-assembling dynamics and nanoscale structure of SMI. As advances in the field continue, we look forward to proliferating uses of SAXS based upon its abilities to robustly produce mechanistic insights for biology and medicine.

Keywords: Interactions; Macromolecules; Small-angle X-ray scattering (SAXS); Structural characterization; Surfactants; Theoretical models.

Publication types

  • Review