[18F]FDG PET metabolic patterns in mesial temporal lobe epilepsy with different pathological types

Eur Radiol. 2024 Feb;34(2):887-898. doi: 10.1007/s00330-023-10089-1. Epub 2023 Aug 15.

Abstract

Objectives: To investigate [18F]FDG PET patterns of mesial temporal lobe epilepsy (MTLE) patients with distinct pathologic types and provide possible guidance for predicting long-term prognoses of patients undergoing epilepsy surgery.

Methods: This was a retrospective review of MTLE patients who underwent anterior temporal lobectomy between 2016 and 2021. Patients were classified as having chronic inflammation and gliosis (gliosis, n = 44), hippocampal sclerosis (HS, n = 43), or focal cortical dysplasia plus HS (FCD-HS, n = 13) based on the postoperative pathological diagnosis. Metabolic patterns and the severity of metabolic abnormalities were investigated among MTLE patients and healthy controls (HCs). The standardized uptake value (SUV), SUV ratio (SUVr), and asymmetry index (AI) of regions of interest were applied to evaluate the severity of metabolic abnormalities. Imaging processing was performed with statistical parametric mapping (SPM12).

Results: With a mean follow-up of 2.8 years, the seizure freedom (Engel class IA) rates of gliosis, HS, and FCD-HS were 54.55%, 62.79%, and 69.23%, respectively. The patients in the gliosis group presented a metabolic pattern with a larger involvement of extratemporal areas, including the ipsilateral insula. SUV, SUVr, and AI in ROIs were decreased for patients in all three MTLE groups compared with those of HCs, but the differences among all three MTLE groups were not significant.

Conclusions: MTLE patients with isolated gliosis had the worst prognosis and hypometabolism in the insula, but the degree of metabolic decrease did not differ from the other two groups. Hypometabolic regions should be prioritized for [18F]FDG PET presurgical evaluation rather than [18F]FDG uptake values.

Clinical relevance statement: This study proposes guidance for optimizing the operation scheme in patients with refractory MTLE and emphasizes the potential of molecular neuroimaging with PET using selected tracers to predict the postsurgical histology of patients with refractory MTLE epilepsy.

Key points: • MTLE patients with gliosis had poor surgical outcomes and showed a distinct pattern of decreased metabolism in the ipsilateral insula. • In the preoperative assessment of MTLE, it is recommended to prioritize the evaluation of glucose hypometabolism areas over [18F]FDG uptake values. • The degree of glucose hypometabolism in the epileptogenic focus was not associated with the surgical outcomes of MTLE.

Keywords: Epilepsy; Pathology; Positron emission tomography; Prognosis; Temporal lobe.

MeSH terms

  • Epilepsy, Temporal Lobe* / diagnostic imaging
  • Epilepsy, Temporal Lobe* / surgery
  • Fluorodeoxyglucose F18
  • Gliosis / diagnostic imaging
  • Glucose
  • Humans
  • Magnetic Resonance Imaging
  • Positron-Emission Tomography

Substances

  • Fluorodeoxyglucose F18
  • Glucose