Phonon mechanism of angle-dependent superlubricity between black phosphorus layers

Nanoscale. 2023 Sep 1;15(34):14122-14130. doi: 10.1039/d3nr01867a.

Abstract

Based on a combination of molecular dynamics simulations and quantum theories, this study discloses the phonon mechanism of angle-dependent superlubricity between black phosphorus layers. Friction exhibits 180° periodicity, i.e., the highest friction at 0° and 180° and lowest at 90°. Thermal excitation reduces friction at 0° due to thermal lubrication. However, at 90°, high temperature increases friction caused by thermal collision owing to lower interfacial constraints. Phonon spectra reveal that with 0°, energy dissipation channels can be formed at the interface, thus enhancing dissipation efficiency, while the energy dissipation channels are destroyed, thus hindering frictional dissipation at 90°. Besides, for both commensurate and incommensurate cases, more phonons are excited on atoms adjacent to the contact interface than those excited from nonadjacent interface atoms.