Highly Luminescent and Stable Halide Perovskite Nanocrystals by Interfacial Defect Passivation and Amphiphilic Ligand Capping

ACS Appl Mater Interfaces. 2023 Aug 30;15(34):41081-41091. doi: 10.1021/acsami.3c05868. Epub 2023 Aug 15.

Abstract

Halide vacancies cause lattice degradation and nonradiative losses in halide perovskites. In this study, we strategically fill bromide vacancies in CsPbBr3 perovskite nanocrystals with NaBr, KBr, or CsBr at the organic-aqueous interface for hydrophobic ligand-capped nanocrystals or in a polar solvent (2-propanol) for amphiphilic ligand-capped nanocrystals. Energy-dispersive X-ray spectra, powder X-ray diffraction data, and scanning transmission electron microscopy images help us confirm vacancy filling and the structures of samples. The bromide salts increase the photoluminescence quantum yield (98 ± 2%) of CsPbBr3 by decreasing the nonradiative decay rate. Single-particle studies show the quantum yield increase originates from the poorly luminescent nanocrystals becoming highly luminescent after filling vacancies. Furthermore, we tune the optical band gap (ultraviolet-visible-near-infrared) of the hydrophobic ligand-capped nanocrystals by halide exchange at the toluene-water interface using saturated NaCl or NaI solutions, which completes in about 60 min under continuous mixing. In contrast, the amphiphilic ligand accelerates the halide exchange in 2-propanol, suggesting ambipolar functional groups speed up the ion-exchange reaction. The bromide vacancy-filled or halide-exchanged samples in a toluene-water biphasic solvent show higher stability than amphiphilic ligand-capped samples in 2-propanol. This strategy of defect passivation, ion exchange, and ligand chemistry to improve quantum yields and tune band gaps of halide perovskite nanocrystals can be promising for designing stable and water-soluble perovskite samples for solar cells, light-emitting diodes, photodetectors, and photocatalysts.

Keywords: defect passivation; halide vacancy; ion-exchange reaction; nanocrystals; perovskites.