Enhancement of weak ferromagnetism, exotic structure prediction and diverse electronic properties in holmium substituted multiferroic bismuth ferrite

Phys Chem Chem Phys. 2023 Aug 23;25(33):22345-22358. doi: 10.1039/d3cp03259k.

Abstract

Bismuth ferrite (BFO, BiFeO3), exhibiting both ferromagnetic and ferroelectric properties at room temperature, is one of the most researched multiferroic materials with a growing number of technological applications. In the present study, using a combined theoretical-experimental approach, we have investigated the influence of Ho-doping on the structural, electronic and magnetic properties of BFO. Synthesis and structural XRD characterization of Bi1-xHoxFeO3 (x = 0.02, 0.05, and 0.10) nanopowders have been completed. After structure prediction of Ho-doped BiFeO3 using bond valence calculations (BVC), six most favorable candidates were found: α-, β-, γ-, R-, T1, and T2. Furthermore, all structure candidates have been examined for different magnetic ordering using DFT calculations. The magnetic behavior of the synthesized materials was investigated using a SQUID magnetometer equipped with an oven. The plethora of magnetic and electronic properties of the Ho-doped BFO that our theoretical research predicted can open up rich possibilities for further investigation and eventual applications.