Ultrasound characteristics of the cervical vagus nerve in patients with type 2 diabetes and diabetic peripheral neuropathy

Endokrynol Pol. 2023 Aug 14. doi: 10.5603/EP.a2023.0056. Online ahead of print.

Abstract

Introduction: Diabetic peripheral neuropathy (DPN) and autonomic neuropathy are commonly coexistent in patients with type 2 diabetes mellitus (T2DM). Current assessment tools for diabetic neuropathy remain complicated and limited. We aimed to investigate the sonographic changes of the cervical vagus nerve in DPN patients with T2DM.

Material and methods: Patients with T2DM were divided into a DPN group (DPN, n = 44) and non-DPN controls (NDPN, n = 43) based on electromyogram results. Another 43 healthy controls (CON) were included. High-frequency ultrasound (HFU) of the vagus nerve was performed in all participants.

Results: Compared with controls, the honeycomb structure of the vagus nerve in patients with T2DM decreased, p < 0.001. The DPN group had higher cross-sectional area (CSA) of the right vagus nerve than the NDPN group (1.60 ± 0.52 vs. 2.00 ± 0.57 mm2, p =0.001). Logistic regression showed that right vagus nerve CSA was a risk factor of DPN (odds ratio [OR] = 3.924, p = 0.002). Right vagus nerve CSA was positively correlated with diabetes duration (p = 0.003), and negatively correlated with the motor conduction velocity (MCV) of the ulnar, median, and common peroneal nerves (p < 0.001 for all), as well as the sensor conduction velocity (SCV) of the ulnar and median nerve (both p < 0.005).

Conclusion: HFU shows thickening of the cervical vagus nerve in patients with DPN, which is a potential diagnostic feature of diabetic neuropathy.

Keywords: diabetic peripheral neuropathy; high-frequency ultrasound; vagus nerve cross-sectional area.