Statistical approach on the inter-yarn friction behavior of the dual-phase STF/ρ-Aramid impregnated fabrics via factorial design and 3D-RSM

Heliyon. 2023 Jul 29;9(8):e18805. doi: 10.1016/j.heliyon.2023.e18805. eCollection 2023 Aug.

Abstract

Shear thickening fluids (STFs) refer to non-Newtonian fluids of the dilatant variety, wherein their viscosity experiences a significant surge with an escalation in the shear rate. In this investigative work, the friction behavior between yarns (pull-out) and absorption of static and kinetic energy during the phenomenon of friction between yarns in STFs are performed by monophase (MP-STF) adding nano SiO2 and dual-phase (MP-STF) adding carbon nanotubes. The ρ-Aramid fabrics were reinforced via the "foulard process", and carried out on MP-STF, and DP-STF/ρ-Aramid-impregnated fabrics to evaluate and compare with the enhancement in interfacial friction properties between yarns. The results showed that DP-STF has more significant than MP-STF and MP-STF in ultimate load, kinetic shear stress, static shear stress, and friction energy level effects. The DP-STF exhibits various friction enhancement mechanisms at the yarn interface, leading to higher absorption of static and kinetic energy related to interfacial friction, as indicated by the results obtained. Furthermore, the DP-STF/ρ-Aramid impregnated fabrics exhibited ultimate load (22.23 ± 0.522 N), kinetic shear stress (35.73 ± 0.850 MPa*100), static shear stress (36.28 ± 0.900 MPa*100), and friction energy level (610.33 ± 0.250). Increased ultimate load (581.7% and 180.7%), kinetic shear stress (621.4% and 174.6%), static shear stress (550.5% and 159.1%), and friction energy level (680.2 and 186.7%) compared to WT-STF and MP-STF, respectively. The current discoveries hold immense potential for various applications in the fields of engineering and smart material technologies. These applications span a multiplicity of industries, including sports products, medical advancements, space technology, as well as protective and shielding products.

Keywords: CNT; Carbon nanotube; Energy absorption; Kevlar; Pull-out test.