Dose-Volume Tolerance of the Brain and Predictors of Radiation Necrosis After 3-Fraction Radiosurgery for Brain Metastases: A Large Single-Institutional Analysis

Int J Radiat Oncol Biol Phys. 2024 Jan 1;118(1):275-284. doi: 10.1016/j.ijrobp.2023.07.040. Epub 2023 Sep 8.

Abstract

Purpose: Stereotactic radiosurgery (SRS) is the current standard of care in patients with brain metastases and controlled extracranial disease. Radiation necrosis (RN) is the dose-limiting side effect of SRS, but the dose constraints especially for fractionated SRS remain poorly defined. We assessed the risk of RN after 3-fraction SRS with a goal to identify specific dose-volume constraints associated with grade 3 or higher RN (G3RN).

Methods and materials: A single-institutional retrospective review of patients treated with 3-fraction SRS was performed. The primary endpoint was G3RN, which was defined as severe symptoms with evidence of necrosis on magnetic resonance imaging with perfusion and/or biopsy confirmation. Tissue volume around each target lesion was contoured, and volumetric doses per lesion were recorded. Logistic regression models were used to estimate the relationship between RN and each volumetric dose, and normal tissue complication probability modeling was performed using a modified Lyman-Kutcher-Burman model.

Results: From 2015 to 2021, 434 patients underwent 539 courses of linear accelerator-based SRS; 2518 lesions were treated. Median SRS dose was 24 Gy. Median follow-up after SRS was 7.9 months, and the median overall survival was 9 months. A total of 93 patients (17.2%) and 123 lesions (4.9%) developed any RN. Forty-two patients (7.8%) and 57 lesions (2.3%) developed G3RN. On logistic regression, V20 and V23 were best predictors of any grade RN and G3RN, respectively, with cutoff values of 4 cc, 10 cc, and 20 cc associated with <5%, <7.5%, and <10% risk of any RN, respectively, and V23 < 15 cc associated with <5% risk of G3RN. With constrained optimization of the normal tissue complication probability Lyman-Kutcher-Burman model for G3RN, we obtained a TD50 (uniform dose resulting in a 50% complication risk) of 31.4 Gy (95% CI, 27.8-35.1 Gy).

Conclusions: In patients receiving 3-fraction SRS, G3RN was seen in 7.8% of patients, and 2.3% of the lesions were treated. V20 and V23 were the most robust dosimetric parameters associated with RN. Further studies evaluating the outcomes and RN in patients treated with fractionated SRS compared with single-fraction SRS are warranted.

MeSH terms

  • Brain / radiation effects
  • Brain Neoplasms* / secondary
  • Humans
  • Necrosis / etiology
  • Necrosis / pathology
  • Probability
  • Radiation Injuries* / pathology
  • Radiosurgery* / adverse effects
  • Radiosurgery* / methods
  • Retrospective Studies