Chitosan and TiO2 functionalized polypropylene nonwoven fabrics with visible light induced photocatalytic antibacterial performances

Int J Biol Macromol. 2023 Oct 1:250:126305. doi: 10.1016/j.ijbiomac.2023.126305. Epub 2023 Aug 11.

Abstract

Chitosan/TiO2 functionalized polypropylene (CS/TiO2/PP) nonwoven fabrics were fabricated through crosslinking of chitosan with glutaraldehyde followed by loading of TiO2 nanoparticles. The functionalized CS/TiO2/PP has super hydrophilicity and excellent visible light induced photocatalytic antibacterial properties owing to the synergistic effects of CS and TiO2. The photocatalytic degradation performance was determined by assessing the degradation of methyl blue under simulated visible light irradiation and its recyclability was also evaluated. In addition, SEM images demonstrated that TiO2 nanoparticles were distributed evenly on the surface of the 2 g/L CS/TiO2/PP. Meanwhile, the polypropylene surface showed a significant increase in hydrophilicity after being treated with chitosan and TiO2. The photocatalytic degradation results revealed that CS/TiO2/PP had higher photocatalytic properties than those of pure PP under visible light, and the degradation rate of methylene blue reached 96.4 % after 90 min of light exposure. Compared to pure PP, the antibacterial properties of CS/TiO2/PP significantly increased, and the bacterial reduction percentages were increased to 98.7 % and 96.3 %, against E. coli and S. aureus, respectively. The functionalized CS/TiO2/PP composites exhibited promising potential in environmentally friendly antibacterial materials.

Keywords: Chitosan; Photocatalytic; TiO(2).