In-situ growth of porous rod-like tungsten oxide for electrochemical determination of cupric ion

Anal Chim Acta. 2023 Oct 2:1276:341645. doi: 10.1016/j.aca.2023.341645. Epub 2023 Jul 20.

Abstract

Preconcentration can effectively enhance the detection performance of electrodes in the electrochemical detection of heavy metal ions, but it also presents challenges for real-time monitoring. Several attempts have been made to optimize preconcentration by improving the adsorption capacity or detection mechanism of the electrode. The valence transfer of tungsten oxide between W5+/W6+ can participate in the reduction between the electrode material and heavy metal ions, playing a role in preconcentration to some extent. Therefore, we developed a WO3/SSM electrochemical sensor for the detection of Cu(II) that utilizes the valence variation property of WO3. The crystallinity and microstructure of the WO3/SSM electrode can be regulated by controlling the deposition parameters, and we prepared three types of WO3/SSM with different morphologies to identify the influence of the electrochemical effective surface area. The proposed electrode shows high performance as a Cu(II) sensor under short preconcentration time (60 s), with an excellent sensitivity of 14.113 μA μM-1 cm-2 for 0.1-10.0 μM and 4.7356 μA μM-1 cm-2 for 10.0-20.0 μM. Overall, the combined effect of morphology and valence transfers shortens the preconcentration time and optimizes preconcentration while ensuring excellent electrode performance. This WO3/SSM electrode is expected to drive great advances in the application of tungsten oxide in the electrochemical detection of heavy metal ions.

Keywords: Cupric ion; Electrochemical sensor; In-situ growth; W(5+)/W(6+) valence transfer; WO(3)/SSM.