Harmonized biochemical modification of cell walls to get permission for entrance of Azospirillum sp. to rice roots

Plant Sci. 2023 Oct:335:111823. doi: 10.1016/j.plantsci.2023.111823. Epub 2023 Aug 10.

Abstract

Biological nitrogen-fixation is important in increasing crop efficiency. Azospirillum is a nitrogen-fixing microorganism that naturally coexists with grasses roots. The present study was undertaken to clarify the role of rice root cell walls in the acceptance of two Azospirillum species, alone or in combination with indole-3-acetic acid (IAA) and gibberellic acid (GA3) treatments. Rice seedlings were grown in Yoshida solution for 21 days and then inoculated with A. brasilense and A. irakens in the presence of 0, 0.57, and 1.14 mM of IAA or 0, 0.29, and 0.58 mM GA3 or a combination of 1.14 mM of IAA and 0.58 mM of GA3. The results showed that the amount of hydrogen peroxide, lipid peroxidation, total nitrogen and activity of ferulic acid peroxidase, NADPH oxidase, nitrate reductase, pectin methyl esterase, cellulase, mannanase, xylanase and pectinase were significantly increased in inoculated samples treated with or without phytohormones. The highest activity of these enzymes was observed in A. brasilense- inoculated rice roots in auxin+gibberellin treatment. In the latter, the activity of phenylalanine ammonia lyase and wall ferulic acid peroxidase enzymes, the content of cell wall polysaccharide, lignin, and total phenolic compounds were the least, compared to controls and also with those samples which were inoculated with A. irakens. The results indicate an active role of the wall and its enzymes in allowing bacteria to enter the roots. Understanding this mechanism can improve the methods of inoculating bacteria into plants and increase crop efficiency, which will result in reduced use of chemical fertilizers and their destructive environmental effects.

Keywords: Auxin; Azospirillum; Cell wall loosening; Gibberellin; Nitrogen fixation.

MeSH terms

  • Azospirillum*
  • Bacteria
  • Cell Wall
  • Nitrogen
  • Oryza* / microbiology
  • Peroxidases
  • Plant Roots / microbiology

Substances

  • ferulic acid
  • Peroxidases
  • Nitrogen