Laboratory Results of a Real-Time SHM Integrated System on a P180 Full-Scale Wing-Box Section

Sensors (Basel). 2023 Jul 27;23(15):6735. doi: 10.3390/s23156735.

Abstract

The final objective of the study herein reported is the preliminary evaluation of the capability of an original, real-time SHM system applied to a full-scale wing-box section as a significant aircraft component, during an experimental campaign carried out at the Piaggio Lab in Villanova D'Albenga, Italy. In previous works, the authors have shown that such a system could be applied to composite beams, to reveal damage along the bonding line between a longitudinal stiffening element and the cap. Utilizing a suitable scaling process, such work has then been exported to more complex components, in order to confirm the outcomes that were already achieved, and, possibly, expanding the considerations that should drive the project towards an actual implementation of the proposed architecture. Relevant topics dealt with in this publication concern the application of the structural health monitoring system to different temperature ranges, by taking advantage of a climatic room operating at the Piaggio sites, and the contemporary use of several algorithms for real-time elaborations. Besides the real-time characteristics already introduced and discussed previously, such further steps are essential for applying the proposed architecture on board an aircraft, and to increase reliability aspects by accessing the possibility of comparing different information derived from different sources. The activities herein reported have been carried out within the Italian segment of the RESUME project, a joint co-operation between the Ministry of Defense of Israel and the Ministry of Defense of Italy.

Keywords: composite structures; damage characterization; real-time processing; sensors; smart devices; structural health monitoring.