Effects of Spring Drought and Nitrogen Addition on Productivity and Community Composition of Degraded Grasslands

Plants (Basel). 2023 Jul 31;12(15):2836. doi: 10.3390/plants12152836.

Abstract

To explore whether there were differences among the patterns of response of grasslands with different levels of degradation to extreme drought events and nitrogen addition, three grasslands along a degradation gradient (extremely, moderately, and lightly degraded) were selected in the Bashang area of northern China using the human disturbance index (HDI). A field experiment with simulated extreme spring drought, nitrogen addition, and their interaction was conducted during the growing seasons of 2020 and 2021. The soil moisture, aboveground biomass, and composition of the plant community were measured. The primary results were as follows. (1) Drought treatment caused soil drought stress, with moderately degraded grassland being the most affected, which resulted in an 80% decrease in soil moisture and a 78% decrease in aboveground biomass. The addition of nitrogen did not mitigate the impact of drought. Moreover, the aboveground net primary production (ANPP) in 2021 was less sensitive to spring drought than in 2020. (2) The community composition changed after 2 years of drought treatment, particularly for the moderately degraded grasslands with annual forbs, such as Salsola collina, increasing significantly in biomass proportion, which led to a trend of exacerbated degradation (higher HDI). This degradation trend decreased under the addition of nitrogen. (3) The variation in drought sensitivities of the ANPP was primarily determined by the proportion of plants based on the classification of degradation indicators in the community, with higher proportions of intermediate degradation indicator species exhibiting more sensitivity to spring drought. These findings can help to provide scientific evidence for the governance and restoration of regional degraded grassland under frequent extreme weather conditions.

Keywords: aboveground biomass; degraded grassland; extreme drought; nitrogen addition; vegetation composition.